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A theory of spin-lattice relaxation is presented in which the modulated crystalline potential
does not act directly, but entails modulation of orientation and polarization of the orbitals.
These factors are responsible for a modulation of the effective magnetic field acting on the
electron spin, which supplies the spin transitions. Three consequences result from this for-
mulation: (a) The spin Zeeman term does not play its traditional role in the relaxation pro-
cess, the reason for this being that the effective dynamic magnetic field in Kramers salts is
related to AL*S and ,Bf‘ ﬁ, and not to 2/3§' H. In other words, the relaxation results from the
modulation of the anisotropic g factor. (b) The rotational modes of the crystalline complex
may play an important role, even though the amplitude of vibration is weaker than that of the
vibration modes. We will see indeed that the rotating motion of the orbitals can be essential
in the relaxation process; this motion is generated by all the vibration modes (which also en-
tail polarizations), but in particular by the purely rotational modes of the complex. (c)
Another effect will result from the modulation of the orbital energy; this effect will be studied
in an addendum [Phys. Rev. (to be published)].

I INTRODUCTION ated by the thermal motion of the lattice atoms)
Since the work of Heitler and Teller® and Fierz? supplies transitions between the spin eigenstates
it has generally been admitted that spin-lattice re- of the static Hamiltonian,3the energy difference be-
laxation in crystalline media is, principally, a ing transferred to the lattice oscillators. This

process by which the modulated potential (gener- way of considering the problem implies the hypoth-
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esis by which the orbitals between which the tran-
sitions are induced do not follow adiabatically the
displacements of the surrounding atoms. The aim
of the present paper is to discuss this adiabaticity.

Our study is divided into six sections. In Sec.
II, the principles on which spin-lattice relaxation
in crystalline media is founded are briefly
reviewed , and some aspects of these principles
are criticized. In Sec. III, a new formulation of
the problem is presented. Section IV gives a de-
tailed comparison between the results obtained
with the two theories. In Sec. V, the theory is ap-
plied to a simple model of crystalline lattice. It
is shown that the vibrational modes act on the sys-
tem by means of a modulation of orientation of the
orbitals. In Sec. VI, a specific formulation to
study spin-lattice relaxation through the rotating
motion of the orbitals is presented and some ap-
plications of this formulation are given.

II. PRINCIPLES OF SPIN-LATTICE RELAXATION
THEORY IN CRYSTALLINE MEDIA

A. Expression of Total Hamiltonian Operator

Let us consider a crystalline lattice in which
paramagnetic ions are surrounded by diamagnetic
ones producing at their level an electric potential
V.. The Hamiltonian describing the motion of the
paramagnetic ion in interaction with the lattice and
an applied magnetic field H can be written as fol-
lows:

je=3+26S-H+ pL- H+aL-S+ v, 43,, (1

where 3¢, represents the _energy of the free ion,
ZBS H BL H and AL S are the spin Zeeman
term, the orbltal Zeeman term, and the spin-orbit
coupling term, for this ion, V, is the crystalline
potential, and 3C; is the lattice-vibration operator,

3¢, can be expressed as a function of the crea-
tion and annihilation operators az and a} as fol-
lows*®

3¢y =Ligfiwglataz +3) , (2

where § is the wave vector of the acoustic waves,
and wy is the frequency of the gth mode.

The crystalline potential V, depends on the ther-
mal motion of the lattice ions and, thus, can be
expanded in powers of the deformations, ¢,;, of
the ionic complex. These deformations can, in
turn, be written as functions of the creation and
annihilation operators as follows.

Let us denote by R,, the equilibrium position of
an ion and by SR} the displacement of this ion
from equ111br1um we can write®

- 0 0
6R. =20 ¢ ez (7/2Mwg)" *ag e, aje B},
(3)

where Mis the mass of the crystal.

The €4 is the unit vector directed along the dis-
placement associated with a mode.

The strain tensor around the site R will be

written
( sz > ’ @

N N - - i 9
:ZdJ (h'/2qu)1 /Z%Z(eﬁkql +eszk){aaela'ﬁp

—afe- B} (5)

where &, l=x, y, 2

Following Orbach®” we can ignore the aniso-
tropy and use an average strain,

The expansion of V, in powers of the average
strain can be written as

V=V, yWe, vy @e2yo.. (6)

where V? is the static interaction, which re-
moves the orbital degeneracy. The terms depend-
ing on €, play a role in the relaxation process
discussed later.

B. Formulation of Nonadiabatic Theory

Many formulations of the nonadiabatic theory
exist™ 1% which present some differences. We
will not study the specific aspects of each of them,
because we are specifically interested here in the
role given to the dynamic crystalline potential and
the magnetic operators of the system. As regards
these operators, two alternative roles have been
proposed, by Van Vleck® and Mattuck and Strand-
berg.® We first present a brief summary of the
theory, following Mattuck and Strandberg, and
then compare it with Van Vleck’s formulation in
so far as this is relevant to the problem.

In its most general aspect, the nonadiabatic
theory expresses the fact that the crystalline po-
tential modulation, produced at the level of the
paramagnetic ions, supplies transitions between
the two lowest spin states of the static Hamilto-
nian. Two mechanisms are encountered: the di-
rect process and the Raman process. The first
one is generated by the linear term V'Y ¢ intro-
duced in formula (6). In such a case, spin relax-
ation is accompanied by the creation of a single
phonon. This mechanism is thus predominant in
the liquid-helium region.

Let us denote by ¥, and ¥_the two lowest states
of the Hamiltonian

3C0+ZB§-ﬁ+7\E-§+Bf-ﬁ+ v

and N and N +1 two states of the lattice operator
JC; which obey the energy conservation equation

E -E=Ey-Ey, ;. (7
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The relaxation probability regarding the direct
process will be

W_ .=/ |[(E Vg (N|e|N+1) [%(E) ,(8)

where p (E) is the density of the final states. The
Raman process is generated by the quadratic term
V® €2 and by the linear term taken twice using
second-order perturbation theory; this mechanism
is thus predominant at high temperatures. In this
case, the spin relaxation is accompanied by the
creation and annihilation of two phonons of differ-
ent energies such that

E+_E-=(EN_EN+1)—(EN'_EN',,I)- (9)

The total transition probability resulting from
this mechanism will be obtained by summing over
all phonon modes.

Both processes being based upon the same as-
sumption regarding the role of the crystalline po-
tential, we will limit our study to the direct pro-
cess, it being admitted that the considerations
developed will be quite general and could be ap-
plied also to the Raman process.

The effects of the electronic Zeeman terms and
the spin-orbit-coupling term are well known. The
Zeeman terms play an essential role in the case
of the Kramers salts in which the lowest states
present a spin degeneracy which can be removed
only by a magnetic field. The spin-orbit inter-
action will be essential in mixing the o and 8 func-
tions, without which the relaxation would not be
possible since the crystalline potential is a purely
spatial operator.

The theory of Van Vleck differs from the one of
Mattuck and Strandberg in two respects: First,
the choice of the unperturbed operator is not the
same. However, as pointed out by Mattuck and
Strandberg, ® what one chooses as the unperturbed
system is a matter of convenience (such as sim-
plicity, rapidity of convergence, and so on). So,
this point does not change the results obtained with
the two formulations. The second point which
makes them different is the choice of initial and
final states. We know, in fact, according to Kar-
plus and Schwinger®!! that when a system is in an
arbitrary state A at time £=0 and we wish to know
the probability amplitude of some other state B,
orthogonal to A at time ¢, we can write

Py . A(t)=(B|exp[(it/m) (e, +3¢)]| 4) , (10)

where 3C; +3C, is the total Hamiltonian operator,
which does not depend on time.

There is an important difference here between
the two formulations, since the second one takes
the eigenfunctions of 3¢+ 28%8-H+ V‘? +3C; as ini-
tial and final states, while the first one takes the
eigenfunctions of
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5o+ 288 H4 BT H D 54V Q13¢, . (11)

Equation (10) shows clearly the importance of the
choice of the eigenstates between which the tran-
sitions are induced. In fact, the two theories lead
to equivalent results to the considered order of
magnitude.

C. Criticism of Previous Formulations
i

As regards our problem, there is a point which
is common to these two formulations: The func-
tions between which the transitions are induced
present an orbital part which is static with respect
to the laboratory axes. The choice of such func-
tions seems, however, questionable. It implies
that when a spin transition takes place, the axis
of quantization of orbitals does not follow the dis-
placements of the crystalline complex. This hy-
pothesis is in contradiction with the data of the
problem. We know, in fact, that the motion of the
lattice ions is very slow relative to the orbital
motion of electrons; as a consequence, the orbit-
als of the unpaired electrons must adjust them-
selves adiabatically to the position of the crystal-
line complex.

On the other hand, the motion of the complex
presents in its Fourier spectrum a component
which corresponds to the resonance frequency of
the spin. So that, the problem must be considered
as follows: The modulated crystalline potential
entails modulation of orientation and polarization
of the orbitals. This orbital modulation generates
a modulation of the effective magnetic field, which
supplies the spin transitions. In consequence, the
process involves two phenomena, which are
superposed: One of them is adiabatic (the modu-
lation of orbitals consecutive to the motion of
ionic complex) and the other is not (the spin tran-
sition).

The whole problem consists therefore of the cal-
culation of the spin Hamiltonian with the modulated
wave functions, and then the separation of it into
a sum of two terms, one of them being static and
the other modulated. Only the second will be use-~
ful in the calculation of the relaxation probability.

Two formalisms can be used to perform this cal-
culation: the semiclassical formalism and the
quantum-mechanical one. In previous papers!?
the first one had been proposed. We now present
a quantum-mechanical description of the problem.

III. FORMULATION OF ADIABATIC QUANTUM THEORY

Consider the Hamiltonian given by formula (1).
We have to determine the dynamic spin Hamiltonian
of the system, We limit our description to the
direct process for the reason previously given,

The most simple and general way to determine
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the effective Hamiltonian 3C,; of the system is to
use the classical formula!*'!®

o’ lGCeffI 0)=2. O[5y An)(n i
n On

+(0’| 285, H, | 0y, (12)

where 3C,,,;= AL+ + gL+ H, |0) and |0’) are the
ground and first excited states of the Hamiltonian
not perturbed by the magnetic operators, |n) is
any other excited state, and Ay, =E; - E,.

In most cases, a perturbation treatment will be
used. Let us compute the eigenfunctions of the
Hamiltonian 3¢+ V¥’ + ViP¢, using the stationary-
perturbation theory for a nondegenerate level. We
obtain

[0)= o +=; Cop;| Ve | o) /B0 0+« + v
|n)= 9a0+ 3, Kol V€| 0)/Bp ) @s04 4+,
|0'>= PoB+Z, ((‘Pil Vé”el ‘Po)/Aoi)fPiﬁ*’ cee, (13)

where the ¢;0’s are the eigenstates of 3¢+ V),
a and B can be the two spin states of a Kramers
doublet, but they can also designate any two spin
states of a paramagnetic system with multiplicity
different from 2,

Starting from these functions, let us compute the
dynamic part of the effective Hamiltonian, To do
so, we will replace [0)/0’) and |#) in (12) by their
values from (13) and keep only those terms con-
taining the dynamic crystalline potential, If we
take into account only the terms inversely propor-
tional to the square of the energy, we obtain!®

3073, | 70025 0me| 00/ Bon) = oo [(P08] Hpert| #40)
X <Ej(<¢,jl V:‘I >€ I (pn> /AnjAOn)‘pjo| vaert[ ‘/’oa>

+ ((Poﬁ | Zcpert | (/7,,0'>
< (0r015r 201 V€| 00/ B0 9)

+ <Z;j(<(pj| Vee| ¢0>/AOJA0n)¢jBIJCDertI ¢n°>

X<‘pn0|3Cpert I <p0a)
+ <¢0B|56Dert |20, (e;| viPe| 0,/ AnJAOn)%U>

X<(pn°'|3€uert[ (,000!>] ’ (14)

where i means that only terms containing the
modulated potential have been kept in the summa-
tion, and o is a spin function. We can expand this
expression into

inol(1/B0n8n Ve, (0B AL 8| 0,0)0,0| AL 8| go) + (o8| AL+ 8| 0,000, | BL* H| )

+ (‘Pol Bi:f‘ﬂ ‘an%ﬁi Xﬁ-S.l o))

+VV ¢, (@B L - §|9;0) (0,0[A T - §|@oa) +(@eB |2 L - §| g, a)

X(qo,,lﬁ—f“-ﬁ l @o) +{ @q | BL-H l ©;) (@, B [7\1 .S | @oa))]+ (1/ Agy Agy) [V(cl)ijo«(ﬁoﬁ'xf:' 51 ©n0)

X(po | AL-S | 9;@) +(0oB| AL+ § | 0,0) (@, | BL- B | 0, ) (0o | BL- B| 0,) (0,82 T-§ |9, a))
Ve, (o, B L8] ¢,0) (@no| AL+ § | @oa) +(0; B[ 2L § | 0,a) (@, | BL* H] 0o)

+(@; | BL* H| @) (@, B| 2L S| @oa))]}.

This expression reduces to (B8 | S'Cs [ o) and then
the transition matrix element will be

(N]e|N+1)y(B|5s | a), (16)

where %5 is the dynamic part of the spin Hamil-
tonian and BN and o (N +1) are two states of the
static Hamiltonian 3Cg +3C; . In the special case of
the Kramers doublets, it can be written

(N|e|N+1)(B|BE-§-H|a) (17a)

(15)

[
where £§.H is the dynamic effective field for the
system,

The relaxation probability will be calculated by

means of the time-dependent perturbation theo-
ry.!” Its expression will reduce to

Wan + o +1y= 27/R) | (B|R ;| @) |?

x [(N|e|N+1)|%(B) , (170)

where p (E) is the density of final states.
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IV. COMPARISON BETWEEN RESULTS OBTAINED WITH ADIABATIC AND NONADIABATIC
THEORIES

Let us compute the transition matrix element obtained by means of the nonadiabatic theory and compare
the results obtained, respectively, with the two methods.
Applying the theory of perturbations to second order, we obtain for the transition matrix element

(g0 \L-S198)
AOB,jo

¢jo+2
n On

<<PoB+jZ>

RNCRIR A APRO AN 2

in AOB. jo! AOB,nu
oo’

+Z<¢n0 IAL. §|¢13> (‘leBt' H I‘Po) %CH‘Z ((Pnlﬁi' ﬁl(”o)

ino Ano,jB AOB,no

(0" NE- Slgea)

AOa,ku'

+
kya’

+Z> (‘P,,I Br'ﬁ l (Pj><(,0j0‘ l)\i' §I¢Oa> 0,0 + Z <¢n

(@n1BL - Hlgo) 8
A Pn

SleB) , ;5 (0l BL-Hl0)(0,0| L S| 0o

ino AOB, ne AOB, je

o|AL.-§
(@0 | 2.8 0,0 +-+- | V| goa

jno

‘Pk("'*z;z (1P A 0, B +2
o &

oIAL-8lp,aX e,

Bog, na Ans, jo

o AL §lo,0'Xe;0' XL §lp.0)
Pn0
A_Oa,jo' AOa,no

Br‘ﬁ|¢q>(pno,

jno AOa,nc AOa, jo jno

+Z(&lﬁi'ﬁh"&(‘ﬁchr.gl(p"a) QO+ -)(N|€‘N+ 1

jno AOa,naAna,ja

A

AOOL

no,jo N0

(18)

In order to compare the roles played by 2T and AT H in the two theories we neglect the terms A, in the

expansion of the denominators.
The expression (18) then may be reduced to

21/ 80,80 VSV, K 0B AT B | 0,0X 9 0| AT B | o) +( 00BN LB 0, a) 0, | AL H| g

jno

+<¢olﬁt'ﬁl‘l’n) (¢,B|xi"§|<poa)) + Vﬁ:n()n‘« (Pnlshi'_sI‘P}UX(PJU‘)‘E'E‘Q”DOD
+ (0.l BT -H| 0 ,;) @ 82T - §|0o@)) + V(0B8] AL -5 ¢ 0) (@ 0| AL - §] ¢ ,0)

+ (o8| AT 5| 0,0) 0, BT - | 0 )]+ (1/Ag, A (0 BIAL -S| @ 000, | BT - H| ) V
ool BT H |00 8L 8|0,y Ve o+ (0,| BT - Hl@ o) 82T -S|, a)V
KN |e|N+1) -

1)

+(¢n3‘A£'§‘¢ia><¢olﬁi:.ﬁl¢n>vc 10

Replacing A,; by (4,,- 4,0), we can see that the
expressions (15) and (19) are equal. This equality
results from the fact that we have neglected the
contribution of the spin Zeeman term at the de-
nominators of expression (18). In fact this con-
tribution is of the same order as that due to the
orbital Zeeman term, in Van Vleck’s theory. On
the contrary, this term does not play a role in

the adiabatic theory, as can be seen from formula
(12).

This can be interpreted when we consider that
spin-lattice relaxation in Kramers salts results
from the modulation of the anigotropic g factor
which is related to AL - S and AL - H (and not to 26§
-H), and is in agreement with various experimen-
tal studies in this field and theoretical studies in
other systems. !*=% According to these, 7; varies
as 1/(Ag)®. (A similar expression is obtained by

1)
¢ On

(1)
c 0j

(19)

means of the adiabatic theory, as will be shown at
the end of Sec. VI.) We know that the rotations
play an important role in this g-factor modulation,
and an example will be given in which they might
be predominant. We will also see that the nonro-
tational modes of the crystalline complex can gen-
erate a relaxation process through the rotating mo-
tion of the orbitals.

V. APPLICATION OF THEORY TO SIMPLE
MODEL OF CRYSTALLINE LATTICE

Consider a model of cystalline lattice in which
paramagnetic ions with spin S=3 are included and
assume that the fundamental eigenfunctions of 3¢,
are p orbitals. The energy associated with these
orbitals presents a degeneracy of third order,

which is removed by the static potential Vi‘”. Let
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0., and ¢, be fh_g directional angles of the applied
magnetic field H in the (x', y’, 2') crystal frame.?
The eigenfunctions of 3+ 285 - H+ V¥ will be

p0=(p,cos6,, - p,sinb )0 ,
pyro=(p, cosb,sing,,

+p, €COSQ ,+ p,Sind , sing )0 | (20)
pxro=(p, cOSH,,COSY,,

- pysing , +p,siné,, cose )0 ,

where ¢ is a function of spin (¢ or 8). We sup-
pose that p,. is the lowest orbital of the system
and p,» and p,. degenerate. As a consequence, the
g tensor will be axial.

We use stationary-perturbation theory to com-
pute the first-order contributions of V¢. The
two functions of lowest orbital energy will be

da= (p,cosb,, —p,sind,,) a
-{[(vV¢,,/A) cos(26,,) cosb,] p,
+ (Vi ¢,,/8) cosb,, - (VV €,,/A) sinb, )b,
+[(VP€,,/A) cos(26,,) sinb,|p,} o , (21)
®B= (p,cosb,,—p,sind,,)B
~{[(v{Pe,/A)cos26,,cos6,]p,
+[(VV€,,/8) cosb,, - (VVe,,/A) sind,] p,

+[(V¥e¢,,/A) cos26,,sinb,]p,18 , (22)

where A is the energy difference between the ex-
cited and the ground states.

Starting from these functions, we may compute
the dynamic spin Hamiltonian for the system.
Here, the system is a Kramers doublet, so that
this Hamiltonian may be determined by a method
slightly different from that developed in Sec. III,
Ref. 14. It consists in computing the off-diagonal
matrix elements of A L. S with the functions da
and & first perturbed by B+ H which will be
called ¥Ya and ¥3.

Keeping only those terms linear in Vi€ and
BL- H (Ref. 22) we obtain

{(p,cosb,, - p,sind,) a|AL- S| (8 H,/A?)
x Ve, (i cos28,,cosb,,) Bp,)
+{(BH,/ 5 V (Ve (i cos20,, cosb,,)
X ap,]h-ﬂ--§|(p, cosé,, - p, sinb,, )B)

+{V®¥¢,, (cos26,,sinb,,)

LEVY 1

x p,a|n T §(8H,/5%)(~isine,) p,8)
+{(BH,/5?) (- ising,) p,a|r L. §]|
x V%, ,(cos26,5ind,)p,B) . (23)

The calculation of the transition matrix element
gives

- (\BH,/A?) VEV__ cos®26,{N+1]|€|N). (24)

With the help of this formula, we may compute the
relaxation probability regarding the direct pro-
cess, and we obtain

21 2232 H?

2
Wvsre-n8="3 AT (v, cos*26,,

x| (N+1]€|N)|%p(E) . (25)

Here an important remark can be made. If we
neglect the terms proportional to py in Eq. (22),
which do not play a role in the computation of the
relaxation probability [cf. Eq. (23)], then the per-
turbed orbitals ®a and ®8 can be deduced from
the static ones by a rotation of an angle equal to

(vi%,,/A) cos26,, . (26)

To show this, we must take into account the fact
that a change in orientation of p,. by an angle 0
changes this orbital into

b, cos(f,+ 9) ~p, sin(6,, + 9) ,
which can be expanded to first order® as follows:
p,(cosb,,— sinb,, 8) - p,(sind,, + cosf,0).  (27)

After identification of the orbital part of (22) and
(27), we obtain the expression (26)., We can see
that if we limit our perturbation expansion of the
eigenfunctions of 3¢, + V, to the subspace of functions
of 3¢+ V* possessing the same L?, 2 the g-tensor
modulation will essentially result from a modula-
tion of orientation of the orbitals. It is likely that
the rotational modes of the complex will play an
important role in this modulation. This might be
true even though the modulated crystalline poten-
tial generated by the rotational modes was weaker
than that of other modes.

We now develop a method to study spin-lattice
relaxation through rotating motion of the orbitals. %

VL. QUANTUM-MECHANICAL FORMULATION OF
SPIN-LATTICE RELAXATION THROUGH
ROTATING MOTION OF ORBITALS

A. General Aspects

In order to deal with the problem, we use a for-
malism which is of practical interest, because it
can be applied to all crystals in the same way. It
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avoids the explicit computation of the modulated
potential and modulated orbitals, and consists in
using two quantization axes to express the magnetic
operators. This method will be presented in its
general form.

Let us consider a crystalline complex centered
on a paramagnetic ion, and study the rotating mo-
tion of this complex around the ion, We call «’,
y', 2’ a frame connected to the complex and x, y,
z a frame whose z axis is along the magnetic field
H and whose x axis is at the intersection of the
plane perpendicular to z and the (x /, ¥ ’) plane
[this amounts to taking $(¢)=0 at every instant,
since the angle ¥ has no effect on the phenomenon].

If the complex were static, the wave functions
would be quantized by a frame connected to the
entire crystal. On the other side — the complex
describing, say, a purely rotating motion — two
cases may be considered: (a) If the velocity of the
ions were of the same order as the orbital motion
of the electrons, the wave functions would not in-
stantaneously follow the complex (this would be
the nonadiabatic cases). (b) When the motion of
the ions is very slow relative to that of the elec-
trons, the wave functions adjust themselves al-
most instantaneously to the orientation of the com-
plex. Only this second case will interest us. The
problem must then be treated as if the orbitals of
the central ion were quantized by the axes of the
complex, while the spin is still quantized by the
external magnetic field.

Let us express the spin operators in the frame
of the laboratory and the space operators in the
frame of the crystalline complex. The spin-orbit
interaction will then be written:

s =ML (S, cosb sing — S, sing
+S,8iné cosg) + L (S, cosb sing +S, cosg
+8,8iné sing) + L .(- S, sinb + S, cosb)}, (28)
and the orbital Zeeman interaction will be®
3o z=BH, (L ,+sind cosg
+L sinf sing + L, coso) . (29)

Since the orientation of the complex is modulated,
6 and ¢ can be considered as a sum of two terms:

6=6,+0,
O=Qu+P, (30)

where (6,,, ¢ ,,) defines the average orientation of
the complex relative to the laboratory axes and

(8, @) is the deviation of this orientation from its
average value. Using a Taylor expansion of siné,
sing, cosf, cosg restricted to the first two terms,
we get, for the magnetic operators?’

¥eps+Hoz=M+M,
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where
M=8(L,.H,sinb,cos,,
+L,. H, sinb,, sing,,)
+X(L,.S, cosb, cosg,,
-L,.S,sing,
+L,.S,siné,, cosy,,
+L,,S, cosh ,sing,,
i +L,S,co8¢,+LS, si~n6m sing,,), (31)
M=B(~L,H,sinb,, singn,¢
+L..H,cosb,,cos¢ 0
+L,.H,sinb,, cos¢ ,,@
+L,H,cos8,,sing ,,0)
- ML .S, sinb,,cosg , 6
+L,.S, cosb,,sing ,,@
+ LS, cos¢ ,@ —L,.S, cosb,, cos@,,@
+L,.S,sind,,sing ,, §
+L, S, sing @) . (32)
These expressions are quite general and can be
used wherever the relaxation through modulation

of orientation is encountered. The Hamiltonian
can thus be written

¥e=3C+2BS,H,+ M+ M+V® +V/ Ve | (33)

where V"¢ has not the same meaning as V"¢,
since it does not include the modulation of the
crystalline potential through the rotational modes.
In fact, the nonrotational modes will also entail
a relaxation process through rotating motion of
the orbitals. In some cases, as in the example
given in Sec. V, this process will be predominant,
and it will be possible to include V¢ in the modu-
lated angles.

The angles 6 and ¢ will then be replaced by
6" and ¢', and V/P¢ will be removed altogether
from the Hamiltonian.

The modulated angles will be expressed as func-
tions of the creation and annihilation operators,
and the total transition probability for the direct
process will be?®

P+N--N+1:(27T/ﬁ)

x| @, N|M|e.(N+1) | p(E) (34)

where N and N+1 are two eigenstates of the lattice
operator obeying the energy conservation equation,
and ¥, and ¥_ are the eigenfunctions of 3¢+ V®
+2BS,H,+M.
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B. Application to Simple Model
of Crystalline Lattice

Let us apply the method of separate quantization
just defined to the system considered in Sec. V.
We obtain for ¥, and ¥_

U, =pyr

(pyoMipa)p;o
+Z) Ez’a —Ei'o ’

(35)

io

J
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\I’-:pz’ﬁ

<1.'>,~:0]M ,ﬁz' B)p,'o
+iza) Ez'B _Ei’a

(36)

Starting from these functions, and neglecting
in the denominators the energy difference be-
tween the spin states whose contribution is negligi-
ble, 2 we get, for the matrix element of M ,

(@, | M| ¥_) = 2BH )\ sinb,,sing ,,c086,, COSP (@ /AE ys ,») = iBH ;A 8Inb,,, €08%P 1y(H/ AE 42y)

+ BH \cos?0,,sin’ @, (6/AE,.,.) - iBH,\c0S ¢,,c080,,5in¢,,(6 /AE,.,) - BHAsin%0,,sin0,, (5 /AE, )

+iBHAsind,,sine,,($/AE,q,) — 2BH\sind,,cos6,,8in,,cos 9, (¢/AE,.,)

- iBH 818,510 @, (9/AE ) + BHAC08%6,,0820,,(6/ AE, 1) + iBH A COS 9,080,510, (6 /AE y1,)
- BH\sin%,,c08%@,,(8/AE ) + iBH 25106 ,,c0820,,(6/AE, ) , (37)

where A E;.,. is the energy difference between the
i’ and the ground levels. This expression depends
on both 6 and ¢ because the system is not axial.

If we suppose that AE,..= AE,.,., this expres-
sion reduces to

W, | 01| %y = (\BH,B/A) cos26,, . (38)

The relaxation probability will thus take the fol-

lowing form®:

W= (2m/7)(Ag)2B2HE cos?26,,| (N| 6| N+ 1) | 2p(E) . (39)

The method of separate quantization just described,
is useful for experimental investigations., It gives
the orientation dependance of the relaxation proba-
bility without knowing the explicit form for the
modulated potential.

C. Study of Ti3* Ion

We now apply the method of separate quantization
to the case of the Ti%* ion® included in an octahe-
dral complex offering a trigonal distortion (an ex-
ample of such a complex is titanium triacetylaceton-
ate). The eigenfunctions describing the unpaired
electron (not perturbed by the applied magnetic
field, the spin-orbit operator, and the crystalline
modulated potential) can be written as follows (see
Fig. 1):

It0>= |0> )
[ty =GM2 1)+ 32| -2)
[ty =@)V2 | -1)- (2)*2|2) , (40)

le.y=(2)M2|1)- (32| -2),
le_y=(BM2| -1y +(3)2|2)

Lvhere
[2) = |- 2)*= (15/87)"%f(r) x4 sin6e?**
[1)=—| - 1)*= (15/81)"%(r) X (- siné cosge®),
|0) = (15/8m)"2f(r)8™/%(3 cos® 0 - 1). (41)

Taking the magnetic static operator M as a per-
turbation, we obtain the eigenfunctions of 3¢+ V¢
+M.

These functions can be written

) = |to) + (B =il +m —in){|t,@)/6+V2(|e,a)/A)}
+(c—id+e—if) {|£.8)/06+V2(]e.B)/0)}
+ (B +il +m +in){lt_a>/5+\f2(|e_a>/A)}
+(c—id—e +if) {|t-B)/0+V2(|e_B)/A)} , (42)

Vo= |to)+ k=it ~m+in) {|1,8)/6+v2(| e.8)/AN}
+(c+id —e —if){|t,0) /6 + V2(|e,ay/a)}
+(k+il =m —in){|t./5+v2(|e.p)/A)}
+(c +id+e+z‘f){’t_a)/5+\f2([e_a)/A)},

FIG. 1. Crystal-field splittings in an octahedral com-
plex with a trigonal distortion.
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where k=3%BH,sind, cosy,, ,
1=%BH,sinb,,sing,, ,

m = (\/2v2) sinb,, cosg,, ,
n=(\/2v2)sinb , sin¢ ,, , (43)
¢ =(\/2v2) cosb,,co8¢,, d=(/2V2)sing,,
e=(\/2v2)cosy,, f=()/2V2)cosb,sing,, .

The transition matrix element of M will be
(T | M| W) ={1/6+2/A} (A BH, c0s26,,)8 . (44)

We can see that the angular dependance is ex-
actly the same as in the model previously studied.
This is related to the fact that the g tensors of
both systems are axial, and that the ground state
of 50+ V.® in this model is a d2 orbital.

This element can also be expressed as a func-
tion of the anisotropy of the g tensor® Ag
=\(2/5 +4/A):

(¥, | F® )= (A gBH,cOS26,)6 . (45)
The transition probability will be
W= (2n/F)(ag)? B2 HE cos?26,,|(N+1| 6 |N)|%0(E) .
(46)

This equation is identical to Eq. (43); this sug-
gests that for complexes possessing the same am-
plitude of modulation and the same density of final
states, the relaxation probability will be propor-
tional to Ag? in conformity with the work of
Akasaka. %

VII. CONCLUSION

The theory which has been proposed presents
some similarities with the theory of spin-lattice
relaxation in liquids®*® and the theory of spin-
rotational relaxation. The methods here developed
can be applied in these two cases with only few
modifications. As a matter of fact, the axes of
quantization of orbitals in a liquid have no prefer-
ential direction and thus it is necessary to average
the relaxation probability over all orientations.
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The existence of deviation from the photoelectric Schottky line has been investigated for
metals theoretically, and the experimental evidence for this deviation has been obtained for
tungsten and molybdenum. A theoretical equation is derived based on a modified model which
contains a classical image force and exchange and correlation forces. The theoretical solu-
tion indicates that the amplitude is inversely proportional to the frequency of the light source,
whereas the phase or the period is found to be independent of the frequency of the light source.
The experiments involved measuring the photoelectric emission current of tungsten and mo-
lybdenum as a function of electric field. Results were obtained for two different frequencies
of light source for each sample. The periodic deviation from the Schottky line was observed
clearly from a number of runs. A comparison of the experimental results with the theoret-
ical prediction has been made. The agreement in the amplitude and the phase between them

is very good.

I. INTRODUCTION

The periodic deviations from the Schottky line in
thermionic emission were explained!® as due to a
periodic dependency of the transmission coefficient
upon the intensity of the applied field. This pe-
riodic behavior of the transmission coefficient was
interpreted as the result of interference of the
electron waves reflected from the potential barrier
at the surface of the metal. Since the same po-
tential barrier is used in the theory of the surface
photoelectric effect, and since the transmission
coefficient enters the expression for the photo-
current in the same way, a periodic dependence of
the photocurrent on the applied field, similar to
the dependence of the thermionic current, is to be
expected. Guth and Mullin’ and Juenker? derived
the periodic terms for photocurrent based on the
potential barriers used for their thermionic-emis-
sion studies. A comparison between their results
and the experimental data has not been available.
However, since both the expressions for the therm-
ionic periodic deviation from the Schottky line
derived by Guth and Mullin''? and by Juenker* fail
to agree with the thermionic experimental results®-1*
the accuracy of their results on photoelectric
emission presented a great suspicion which initiated
the present work.

A modified potential barrier, which has been
used to derive the periodic deviation from the
Schottky line for thermionic emission, '* and, which
was found to be in excellent agreement with the
experimental data, is used in this paper to derive
the periodic deviation from the Schottky line for
photoelectric emission, In view of the result of the
theoretical derivation, it is found that the effect
should be most easily observable for frequencies
very near the threshold, for then the fraction of
the current due to the periodic term has its largest
value,

An experimental setup for photoelectric emis-
sion was built, since experimental data on photo-
electric periodic deviations are not yet available
in the quantity'®'!” which makes possible analysis
of the counter part thermionic results. The agree-
ment between the present theory and the present
experimental results is very good.

II. PHOTOELECTRIC EMISSION FROM METALS

A periodic dependence of photoelectric emission
on an applied field is expected to be from two
parts: (i) for electrons with energies W and ab-
sorbing a photon 4y such that (for notation, see
Ref. 15)

W+hw =2V |



